Temporal regulation of Shaker- and Shab-like potassium channel gene expression in single embryonic spinal neurons during K+ current development.
نویسندگان
چکیده
A developmental increase in density of delayed rectifier potassium current (IKv) in embryonic Xenopus spinal neurons shortens action potential durations and limits calcium influx governing neuronal differentiation. Although previous work demonstrates that maturation of IKv depends on general mRNA synthesis, it is not known whether increases in K+ channel gene transcripts direct maturation of the current. Accordingly, the developmental appearance of specific Kv potassium channel genes was determined using single-cell reverse transcription-PCR techniques after whole-cell recording of IKv during the period of its development. Detection of a coexpressed housekeeping gene along with the potassium channel gene controlled for successful aspiration of cellular mRNA and allowed scoring of cells in which Kv gene transcripts were not detected. Diverse types of Xenopus spinal neurons exhibit homogeneous development of IKv both in vivo and in culture. In contrast, transcripts of two genes encoding delayed rectifier current, Kv1.1 (Shaker) and Kv2.2 (Shab), are expressed heterogeneously during the period in which the current develops. Kv1.1 mRNA achieves maximal appearance in approximately 30% of cells, while IKv is immature; Kv2.2 mRNA appears later in approximately 60% of mature neurons. Kv1.1 and 2.2 are thus candidates for generation of IKv, and spinal neurons are a heterogeneous population with respect to potassium channel gene expression. Moreover, correlation of gene expression with current properties shows that neurons lacking Kv2.2 have a characteristic voltage dependence of activation of IKv.
منابع مشابه
Distinct frequency-dependent regulation of nerve terminal excitability and synaptic transmission by IA and IK potassium channels revealed by Drosophila Shaker and Shab mutations.
Regulation of synaptic efficacy by nerve terminal excitability has not been extensively studied. We performed genetic and pharmacological dissections for presynaptic actions of K+ channels in Drosophila neuromuscular transmission by using electrophysiological and optical imaging techniques. Current understanding of the roles of the Shab IK channel and its mammalian Kv2 counterparts is relativel...
متن کاملGenetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents.
In this study, we perform the first genetic analysis of K+ currents in Drosophila embryonic neurons revealing the identity of the currents present. Unlike muscles, where the presence of Shaker is obvious, Shaker currents are not detectable in these neurons. In contrast, we show that Shal is as important in these neuronal cell bodies as Shaker is in muscles. Only three single-channel currents we...
متن کاملVOLTAGE-GATED K+ CHANNELS IN DROSOPHILA PHOTORECEPTORS Biophysical study of neural coding
The activity of neurons is critically dependent upon the suite of voltage-dependent ion channels expressed in their membranes. In particular, voltage-gated K+ channels are extremely diverse in their function, contributing to the regulation of distinct aspects of neuronal activity by shaping the voltage responses. In this study the role of K+ channels in neural coding is investigated in Drosophi...
متن کاملSubfamily-specific posttranscriptional mechanism underlies K(+) channel expression in a developing neuronal blastomere.
Na(+) and K(+) channels are the two key proteins that shape the action potentials in neurons. However, little is known about how the expression of these two channels is coordinated. To address this issue, we cloned a Shab-related K(+) channel gene from ascidian Halocynthia roretzi (TuKv2). In this animal, a blastomere of neuronal lineage isolated from the 8-cell embryo expresses single Na(+) ch...
متن کاملPrimary sensory neurons express a Shaker-like potassium channel gene.
Developmentally regulated action potentials are a hallmark of Rohon-Beard cells, a class of sensory neurons. In these neurons as well as other primary spinal neurons of Xenopus laevis, the functional differentiation of delayed-rectifier potassium current regulates the waveform of the action potential during the initial day of its appearance. Later, the acquisition of another voltage-dependent p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 10 شماره
صفحات -
تاریخ انتشار 1996